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ABSTRACT: Forecasting global food production is of growing importance in the context of globalizing food supply chains

and observed increases in the frequency of climate extremes. The National Agriculture and Food Research Organization–

Asia-Pacific Economic Cooperation Climate Center (NARO-APCC) Crop Forecasting Service provides yield forecasts for

global cropland on a monthly basis using seasonal temperature and precipitation forecasts as the main inputs, and 1 year of

testing the operation of the service was recently completed. Here we evaluate the forecasts for the 2019 yields of major

commodity crops by comparing with the reported yields and forecasts from the European Commission’s Joint Research

Centre (JRC) and the U.S. Department of Agriculture (USDA). Forecasts for maize, wheat, soybean, and rice were

evaluated for 20 countries located in the Northern Hemisphere, including 39 crop-producing states in the United States, for

which 2019 reported yields were already publicly available. The NARO-APCC forecasts are available several months

earlier than the JRC and USDA forecasts. The skill of the NARO-APCC forecasts was good in absolute terms, but the

forecast errors in the NARO-APCC forecasts were almost always larger than those of the JRC and USDA forecasts. The

forecast errors in the JRC and USDA forecasts decreased as the harvest approached, whereas those in the NARO-APCC

forecasts were rather stable over the season, with some exceptions. Although this feature seems to be a disadvantage, it may

turn into an advantage if skillful forecasts are achievable in the earlier stages of a season.We conclude by discussing relative

advantages and disadvantages and potential ways to improve global yield forecasting.

KEYWORDS: Climate prediction; Regression analysis; Forecast verification/skill; Seasonal forecasting; Agriculture;

Climate services

1. Introduction

The globalization of the economy has changed food supply

chains worldwide. Consumers in many countries increasingly

rely on food imports (FAO 2011). In addition to domestic

production, governmental and commercial entities in import-

dependent countries pay close attention to food production

and export prices in the major food-exporting countries

(Iizumi et al. 2013). Climate extremes during the growing

season are key drivers of the recent rise in global hunger and

one of the leading causes of severe food crises (FAO 2018).

Therefore, in the face of the food crises that occurred during

the last two decades and the observed increases in the fre-

quency of climate extremes, monitoring and forecasting global

food production are of growing importance (Iizumi and Kim

2019). This is further exemplified by initiatives such as the

G20 Agricultural Market Information System (AMIS) and the

Group of Earth Observations Global Agricultural Monitoring

(GEOGLAM; see Becker-Reshef et al. 2019).

Since April 2017, the National Agriculture and Food

ResearchOrganization (NARO)and theAsia-PacificEconomic

Cooperation (APEC) Climate Center (APCC) have jointly

been developing a global crop forecasting system. The statistical

yield models used in the system utilize the APCC multimodel

ensemble (MME) of seasonal temperature and precipitation

forecasts (Min et al. 2014; Sohn et al. 2019) as the input to

predict changes in crop yields in the coming harvesting year

relative to the previous year’s yield (Iizumi et al. 2018b). Using

the system, the NARO-APCC Joint Crop Forecasting Service

provides yield anomaly predictions every month for crops and

countries where harvesting normally occurs within three to six

months of the release of forecast information (Iizumi 2020).

The development status of and plan for the service were pre-

sented to the representatives of over 20 countries and inter-

national organizations at the 16th Session of the AMIS Global

Food Market Information Group held in October 2019 in Rio

de Janeiro (AMIS 2019). Four major crops, including maize,

rice, wheat, and soybean, are considered by the service.

Currently, the service is in its test operation phase lasting from

June 2019 to March 2021.

As one year of the test operation of the servicewas just recently

completed (Table S1 in the online supplemental material), an
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evaluation of the NARO-APCC forecasts is appropriate to

understand the current status of the global crop forecast-

ing and the scientific and technical barriers that need to be

addressed in future research. This study aims to assess the

skills of the NARO-APCC forecasts for the 2019 season in

Europe (17 countries), the United States, Japan, and South

Korea located in the Northern Hemisphere. The official 2019

yield statistics for the countries are already publicly available.

This study also compares forecasts for the European Union

(EU) countries produced by the JRC and those for the United

States released by the USDA with the NARO-APCC fore-

casts to highlight relative advantages and disadvantages. The

NARO-APCC forecasts are solely based on seasonal climate

forecasts, whereas the JRC forecasts incorporate other sources

of information, including historical yield trends, weather ob-

servations, satellite remote sensing, outputs from a process-

based crop model, as well as the 10-day ECMWF forecast. By

contrast, the USDA forecasts heavily rely on field surveys.

Therefore, a comparison of the NARO-APCC forecasts with

the JRC and USDA forecasts is expected to point to the benefits

and limitations of using seasonal climate forecasts in predicting

variations of crop yields. Finally, we discussed potential ways

to further improve global crop forecasting.

2. Material and methods

a. Reported yields

National annual yield statistics for the 17 EU countries and

Serbia for the period 2016–19 were obtained from Eurostat

(https://ec.europa.eu/eurostat/data/database). Serbia is not an

EU member country. The list of countries considered in this

study is available in Table S2. Crop-country combinations with

an average annual national production . 1 million tons (Mt)

over the 2015–17 period, calculated based on the FAO statis-

tical database, were analyzed. There was a difference in the

time period (2016–19 versus 2015–17) because FAO data for

2019 were not yet available when this study was conducted.

Rice and soybean are relatively minor crops in Europe, and

only Italy within the EU produces .1Mt of these crops. For

the 2019 season in Italy, rice yield statistics were available from

Eurostat, while soybean yield statistics had not been reported

when we conducted this study. For this reason, maize, wheat,

and rice were studied in Europe.

Annual yield statistics for the United States at national and

state levels for the period 2016–19 were collected from the

USDA’s National Agricultural Statistics Service (NASS) Quick

Stats (https://quickstats.nass.usda.gov/). The 39 major producing

states for these crops were considered (Table S3). The data

collected from the NASS were originally recorded in bushels

per acre for maize, soybean, and wheat and in pounds per acre

for rice, and these values were converted into tons per hectare

before the analysis. Maize, soybean, rice, and total wheat (a

crop category that combines winter wheat, durum wheat and

other spring wheat) were analyzed for the United States.

Although separate yield statistics are available for the indi-

vidual wheat types, total wheat was selected to provide a

consistent comparison with the NARO-APCC forecasts.

Rice is a relatively minor crop in the United States and

Europe compared to maize and wheat, with some exceptional

rice-producing states and counties. Therefore, national rice

yield statistics from Japan and South Korea for the period

2016–19 were collected from the Ministry of Agriculture,

Forestry, and Fisheries of Japan and Statistics Korea’s Korean

Statistical Information Service, respectively.

b. Yield forecasts

1) JRC FORECASTS

The JRC has provided yield forecasts for major crops in

EU countries as well as neighboring countries since 1993

using theMARS-CropYield Forecasting System (MCYFS, see

MARSWiki 2020; Bussay et al. 2015; van der Velde et al. 2018).

The JRC national 2019 yield forecasts for the EU countries

were obtained from the MARS Bulletins Archive (https://

ec.europa.eu/jrc/en/mars/bulletins). JRC yield forecasts are

available for soft (mostly winter) and durum (mostly spring)

wheat. These forecasts were combined into total wheat yield

forecasts through area-weighting for the analysis. The number

of EU countries analyzed in this study varied by crop and

ranged from one country for rice to 12 countries for wheat

(Table S2). The JRC forecast for wheat in Latvia was available,

but the reported yield was not available. Thus, this crop–

country combination was discarded from the analysis.

The MCYFS facilitates crop monitoring, agro-meteorological

and statistical analyses, and yield forecasting at the country

level (Genovese and Bettio 2004). The JRC yield forecasts are

provided on a monthly basis by combining information from

multiple sources, such as historical yield trends, weather ob-

servations and forecasts, as well as process-based crop model

outputs, satellite remote sensing, and expert knowledge.Auxiliary

information from news sources and agricultural organizations

is also considered by JRC analysts. Analysts use statistical

methods to make yield forecasts. Predictors aggregated at the

national level are based on Europe-wide gridded weather ob-

servations and forecasts (currently at 25 km), gridded agro-

meteorological indicators, gridded satellite-derived vegetation

indices, and gridded crop model outputs, all with a 10-day time

step. Gridded weather observations and 10-day weather forecasts

drive the World Food Studies (WOFOST) crop model, which

simulates crop development stages, water-limited biomass, stor-

age organ yield, leaf area index and transpiration, total water

consumption and root-zone soil moisture (Ceglar et al. 2019; de

Wit et al. 2019). The gridded data are aggregated at the lowest

level of administrative unit by weighting with the arable land area

in each 25-km grid cell derived from non-crop-specific land cover

maps (CORINE; see Feranec et al. 2010). The reported crop

area in each administrative unit is used for aggregation from

the lowest administrative level (NUTS 3; with NUTS referring

to Nomenclature of Territorial Units for Statistics) to the na-

tional level. The resulting predictors are used as input to build

the statistical models that explain the variability in the time se-

ries of reported national yield statistics obtained from Eurostat.

The statistical methods used to forecast the national yields are

trend analysis, regression analysis, and similarity analysis based

on principal component analysis and cluster analysis.
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2) USDA FORECASTS

Yield forecasts for theUnited States at the national and state

levels for the 2019 season were collected from NASS Quick

Stats. For the United States, the USDA yield forecasts for

maize, soybean, and rice at the national and state levels are

available from mid- to late season (August, September, October,

and November). The USDA forecasts begin in May for winter

wheat and in July for spring wheat. The final yield forecasts are

released in August for both winter and spring wheat. The USDA

national-level total wheat forecasts (harvested area of winter and

spring wheat are considered in the calculation of total wheat

forecasts as the weighting factor) become available in July and

August and were used for comparison against the NARO-APCC

forecasts.

The USDA yield forecasts provided by the NASS are es-

sentially based on surveys (Vogel and Bange 1999; FAO

2016). The USDA yield forecasts are provided at the county

level by combining the results of two surveys using statistical

models. Statistical models are used to predict the final num-

ber of fruits and the final weight per fruit from observable

crop conditions (Vogel and Bange 1999). The first surveys are

the agricultural yield surveys, in which producer-reported

data, including area planted, area to be harvested, and ex-

pected yields, are collected on a monthly basis. Data on small

grain crops, including winter wheat, durum wheat, and other

spring wheat, are collected from May through August, while

those on row crops, such as maize, soybean, and rice, are

collected from August through November. The second sur-

veys are the objective yield surveys, which conduct objective

measurements at sampled farm fields and include winter

wheat, maize, and soybeans (rice is not included). Objective

yield surveys are costly and thus conducted only in the top

producing states. County-level yield forecasts are aggregated

at the state and national levels based on crop acreage col-

lected from agricultural yield surveys and quarterly agricul-

tural surveys.

The impacts of weather on crop growth and expected yield

are considered through the surveys. The USDA yield forecasts

assume normal weather conditions for the remainder of the

growing season. If weather, disease, insects, or other conditions

change substantially from the expected normal, then the final

estimate may differ significantly from the earlier forecasts

(Schnepf 2017). Neither weather and climate forecasts nor a

combination of crop models and satellite remote sensing is

used within the nationwide yield forecasting system in the

United States, although nonofficial yield forecasts at the state

level utilize crop models and climate forecasts (FAO 2016).

Satellite-based yield and area estimates are also provided by

the NASS and are released after the harvest, but these are not

used in the USDA yield forecasts made and released during

the season. More details on the USDA yield forecasting method

are available in Vogel and Bange (1999), Egelkraut et al. (2003),

FAO (2016), and Schnepf (2017).

3) NARO-APCC FORECASTS

We used yield anomaly forecasts at the national level pro-

vided by the NARO-APCC Joint Crop Forecasting Service

from June 2019 to April 2020, which covered most of the 2019

season in the Northern Hemisphere. During the test phase, the

NARO-APCC forecasts have been shared with interested

parties around the world. The multiple regression models used

in the service associate key growing season temperature and

precipitation anomalies with yield anomalies and were cali-

brated from one 1.1258 grid cell to another based on the rep-

resentation of actual yield (the Global Dataset of Historical

Yields version 1.1; Iizumi et al. 2014; Iizumi and Ramankutty

2016) and the actual climate conditions [the Japanese 25-year

Reanalysis (JRA-25); Onogi et al. (2007)] for the 1984–2010

period, as elaborated in Iizumi et al. (2018b). TheAPCCMME

temperature and precipitation forecasts issued on the 25th of

every month (20th of every month after November 2019) are

input to the models to derive yield anomaly forecasts within

17 days from the issued climate forecasts (Table S1). The ag-

gregation of yield anomaly forecasts from the grid-cell level to

the country level was carried out for the crop-specific harvested

area in 2000 (Monfreda et al. 2008) as weights. Currently, no

information derived from satellite remote sensing, weather

observations, or crop models is used within the NARO-APCC

forecasts.

The predicted variable of the JRC and USDA forecasts

analyzed in this study is the yield in tons per hectare, while

that of the NARO-APCC forecasts is the yield anomaly

as a percentage of the normal yield. Because of this in-

consistency, postprocessing was performed on the NARO-

APCC forecasts. As described in Iizumi et al. (2018b), the

yield anomaly used in the NARO-APCC forecasts is de-

fined as

DY
t
5

Y
t
2Y

t21

Y
t23:t21

3 100, (1)

where the subscript t indicates the harvesting year; DY is

the yield anomaly (% of the normal yield); Yt and Yt21 are

the yields in the coming harvesting year and the previous

year (t ha21), respectively; and Yt23:t21 is the 3-yr average

yield for the period from year t 2 3 to t 2 1. Accordingly,

the yield anomaly forecast can be converted into the yield

forecast by

Yf ,NARO2APCC
t 5

DYf
t Y

r
t23:t21

100
1Yr

t21 , (2)

where the superscripts f and r indicate the forecast and re-

ported data, respectively. The variable Yf,NARO-APCC is the

NARO-APCC yield forecast (t ha21) derived by combining

the yield anomaly forecast (DYf, percent of the normal yield)

with the reported yields for the 3 years from t2 3 to t2 1 (Yr,

t ha21). For the 2019 yield forecasts, the data reported for the

2016–18 period were used. The NARO-APCC yield forecasts

derived in this manner are analyzed hereafter. In general, the

final goal of organizations that maintain operational crop fore-

casting services is to provide production forecasts to inform

policymakers andmarkets about supply, and yield forecasts are

part of these production forecasts. Therefore, evaluating yield

forecasts rather than yield anomaly forecasts is of primary in-

terest for experts involved in operational crop forecasting
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services. In addition, while winter wheat and spring wheat are

separately predicted within the NARO-APCC system, these

were aggregated to a total wheat forecast for the analysis,

mainly because yield forecast users, such as governmental

agencies, are often more interested in aggregated category of

a crop than subcategories.

4) SIMPLE FORECASTS

We also used a simple forecasting method to provide

‘‘reference’’ yield forecasts. In the method adopted here, the

3-yr average reported yield for the period from t 2 3 to t 2 1

represents the forecasted yield for the coming harvesting year

t (Yf,Simple, t ha21):

Y
f ,Simple
t 5Yr

t23:t21 . (3)

This method is solely based on reported yields, and no ad-

ditional information derived from producer surveys, field

measurements, weather observations, climate forecasts, satel-

lite remote sensing, or cropmodels is considered. The forecasts

derived from the simple method provide a benchmark to

measure the added value of the JRC, USDA, and NARO-

APCC forecasts that consider additional sources of informa-

tion. The method is conceptually similar to the extrapolation

of historical yield trends in predicting yield. Although 3-yr

average yields may be conservative or even pessimistic yield

forecasts compared to extrapolated yield trends when yields

keep rapidly increasing, they serve as reasonable forecasts

when yields are slowly increasing or stagnating (Grassini

et al. 2013; Iizumi et al. 2018a). Utilizing simple method-

based forecasts as the reference for assessing improvements

achieved by using more sophisticated methods is a common

practice in intercomparison and is seen, for instance, in Lecerf

et al. (2019).

c. Skill scores

Weutilized Pearson’s correlation coefficient, the root-mean-

squared error (RMSE), the absolute error (AE), and the

absolute percentage error (APE) to measure the skill of the

yield forecasts. The correlation coefficient (R; dimensionless)

is computed as

R5
�
n

i51

(Yr
2019,i 2Yr

2019)(Y
f
2019,i 2Yf

2019)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Yr
2019,i 2Yr

2019)
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Yf
2019,i 2Yf

2019)
2

s , (4)

where the subscript i is the country (or state for the United

States) and n is the number of countries (or states) within

an administrative unit of interest (Europe or the United

States). The root-mean-squared error (RMSE; t ha21) is

computed as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

Yf
2019,i 2Yr

2019,i

� �2

n

vuuut
. (5)

As seen in Eqs. (4) and (5), these equations compare the

reported and forecasted 2019 country (or state) yields within

an administrative unit. The correlation and RMSE values

were calculated for maize and wheat in the EU and for

maize, soybean, and rice in the United States, where multiple

samples were available for 2019. When only a limited number

of samples were available (this was the case for wheat in the

United States and for rice in Italy, Japan, and SouthKorea), we

instead computed the absolute error for each country. The

absolute error used here (AE; t ha21) is defined as

AE
i
5 jYf

2019,i 2Yr
2019,ij. (6)

Finally, the absolute percentage error was computed for all

crop-country combinations considered here. The yield levels

differed by crop and country. The absolute percentage error

enables the comparison of forecast errors across different crops

and countries. The absolute percentage error used here (APE,

% to the 2019 reported yield) is defined as

APE
i
5

�����Y
f
2019,i 2Yr

2019,i

Yr
2019,i

�����3 100: (7)

3. Results

a. Maize in Europe

Yield forecast skill tends to increase as crops approach the

harvest. The 2019 JRC yield forecasts for the EU countries

became available in April 2019 and were updated monthly

until October 2019 (Fig. 1). The correlation value computed

between the reported and predicted yields for the season

across the 10 maize-producing countries in Europe was 0.939

in April and increased to 0.961 in July and to 0.984 in October

(p , 0.001 for the three months), with some monthly fluctu-

ations. This improvement in the skill score was also observed

for the RMSEs. The RMSE value started at 0.68 t ha21 in

April and decreased to 0.51 t ha21 in July and to 0.49 t ha21 in

October.

Three differences emerged between the JRC and NARO-

APCC forecasts. First, the first month and time period for

which maize forecasts were available was different between

the two forecasts. The NARO-APCC forecasts became

available for Bulgaria, Romania, and Spain inMarch (Fig. 1),

while the first JRC forecasts were published in April. The

final NARO-APCC forecasts occurred at midseason (July)

because the maize-growing season in most countries in

Europe completes within three months after July, before

October (Fig. S1). The yield models used in the NARO-

APCC forecasts associate 3-month average climate anom-

alies with yield anomalies, and therefore, the NARO-APCC

yield anomaly forecast is not provided when harvesting is

expected to occur within three months from the month

in which the forecasts are made. Second, the skill of the

NARO-APCC forecasts for the season was good, as indi-

cated by the correlation values of 0.898 in April and 0.899 in

July as well as the RMSE values of 0.95 t ha21 in April and

1.04 t ha21 in July (Fig. 1); however, these forecast errors

were almost always larger than those of the JRC forecasts

(note that the skill for March was uncertain compared to
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that in the other months because of the small sample size).

Finally, skill score values tended to improve in the JRC

forecasts as crop growth progressed, but this tendency was

not observed in the NARO-APCC forecasts.

b. Wheat in Europe

The first JRC forecasts for 2019 were published in March

2019 and were updated every month until October 2019

(Fig. 2). The correlation values for the JRC forecasts im-

proved slightly with the progress of crop growth from

0.975 to 0.982 in the earlier months (March–June) to 0.985–

0.986 in the later months (July–October). The RMSE

values decreased from 0.47–0.56 t ha21 for the earlier

months to 0.46–0.48 t ha21 for the later months. Most of

the final JRC forecasts were more accurate than the first

JRC forecasts.

The NARO-APCC forecasts began in January 2019 for

seven wheat-producing countries in Europe. The number of

countries where the NARO-APCC forecast was available in-

creased to 12 countries from February to April and decreased

again to nine in May 2019 (Fig. 2) because of the differ-

ent harvesting months among the countries (Fig. S1).

Unlike the maize forecasts described earlier, the skill of the

NARO-APCC wheat forecasts improved as the crop devel-

oped. The correlation values in the later months (April–May;

0.917–0.981) were higher than those in the earlier months

FIG. 1. Monthly scatterplots of the agreement between reported and forecasted 2019 maize yields for

Europe. A total of 10 maize-producing countries in Europe forecasted by both the JRC and NARO-APCC

systems are compared. The list of states is available in Table S2 in the supplemental material. The agreement is

shown with n, sample size; r, correlation coefficient; p, p value; and e, root-mean-squared error in tons per

hectare.
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(January–March; 0.820–0.872), with lower RMSE values in

the later months (0.99–1.18 t ha21) than in the earlier months

(1.25–1.27 t ha21).

c. Maize in the United States

While highly accurate, the USDA maize forecasts were not

available early in the season and became available midseason

(August), mainly due to their heavy reliance on producer

surveys. The first 2019USDA forecasts for 32 maize-producing

states started in August 2019 and finalized in November 2019

(Fig. 3). Even for the first forecasts in August, the correlation

value was extremely high, at 0.976, with an RMSE value of

0.40 t ha21. The skill improved even further with the progress

of crop growth. The USDA forecasts at the end of the season

that were released in November were identical to the reported

yields (note that the final measurements were made in December

(FAO 2016) but not in November).

The first NARO-APCC forecasts for the 10 maize-producing

states became available in March (Fig. 3). The number of states

for which the NARO-APCC forecast was available increased

to 18 in April and to 32 after May and then decreased after July.

The final NARO-APCC forecasts were made in August. The

NARO-APCC forecasts appeared skillful at the state scale, with

monthly variations. The correlation value for the NARO-APCC

forecasts increased from 0.726 in March to 0.879 in August. The

RMSE value decreased from 2.29 t ha21 inMarch to 1.12 t ha21

in August. These values are fairly good in absolute terms but

were always worse than those of the USDA forecasts.

d. Soybean and rice in the United States

For the United States, the results for soybean and rice are

essentially the same as those for maize. The USDA soybean

and rice forecasts began in August and were finalized in

November, whereas the NARO-APCC forecasts covered

FIG. 2. As in Fig. 1, but for wheat yields for Europe.
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April–August for soybean (Fig. S2) and March–July for rice

(Fig. S3). For the USDA soybean forecasts, the correlation

and RMSE values in August were 0.930 and 0.24 t ha21, re-

spectively. The forecast errors in the NARO-APCC soybean

forecasts were larger than those in the USDA forecasts re-

gardless of the month (Fig. S2). This tendency was common

for rice (Fig. S3).

e. Wheat in the United States and rice in Italy, Japan, and
South Korea

The forecast errors in the NARO-APCC wheat forecasts

at the national level released from January to June (AE 5
0.01–0.19 t ha21 and APE5 0.3%–5.5%) were close to those

of the USDA forecasts for total wheat released in July

(0.11 t ha21 and 3.3%); however, the USDA forecast for

August (0.01 t ha21 and 0.2%) was more accurate than any

of the earlier forecasts (Figs. 4a and 5 ). Importantly, both

the NARO-APCC andUSDA forecasts showed lower forecast

errors than the simple forecast, indicating that these forecasts

are value-added to the simple forecast.

For 2019 rice in Italy, the forecast errors of the NARO-

APCC forecasts released from May to August (AE 5 0.40–

0.42 t ha21 andAPE5 6.1%–6.4%) and of the JRC forecast for

June (0.43 t ha21 and 6.6%) were 2 times larger than those of

the simple forecast (Figs. 4b and 5). Only the JRC September

forecast appeared to be superior to the simple forecast. The

NARO-APCC forecasts for rice in Japan released for May–

August were only marginally better than or equivalent to the

simple forecast (Figs. 4c and 5). On the other hand, theNARO-

APCC forecasts for rice in South Korea released fromApril to

FIG. 3. As in Fig. 1, but for maize yields for the United States. All 32 maize-producing states in the United States

forecasted by both theUSDAandNARO-APCC systems are compared. The list of states is available in Table S3 in

the supplemental material.
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July appeared to be more skillful than the simple forecast re-

gardless of the month (Figs. 4d and 5).

f. Comparison with the simple forecast

The NARO-APCC forecasts appeared skillful for 42%

of the 12 maize-producing countries, 46% of the 13 wheat-

producing countries, and 50% of the 4 rice-producing coun-

tries, relative to the simple forecasts. The NARO-APCC

forecasts for the soybean-producing countries examined here

were not skillful. The number of skillful countries for the

NARO-APCC forecasts was one-fifth to one-half of the JRC

and USDA forecasts.

For maize, the NARO-APCC forecasts were skillful for five

countries (DE, ES, FR, HR, and RS; see Table S2 for the ab-

breviations), while the end-of-season JRC forecasts showed

meaningful skill for nine countries (AT, BG, DE, GR, HR,

FR, PL, RO, and SK) (Fig. 5), out of the 11 maize-producing

countries in Europe. Note that out of the 12 maize-producing

countries in Europe (Table S2) theNARO-APCC forecast was

not available for Poland but available for Serbia, whereas the

JRC forecast was not available for Serbia but available for

Poland. For wheat, the NARO-APCC forecasts in five (BE,

FR, GR, HU, and RO) were better than the simple forecasts,

whereas the JRC wheat forecasts outperformed the simple

forecasts in 11 countries (AT, BE, DE, DK, ES, FR, GR, HU,

LT, RO, and SE), out of the 12 wheat-producing countries in

Europe. The NARO-APCC forecasts for rice in Japan and

South Korea were skillful. For the United States, the USDA

forecasts at the national level were skillful for all considered

crops except rice, whereas the NARO-APCC forecasts did a

better job than the simple forecast only for wheat.

At the state level, the final USDA forecasts were better

than the simple forecasts for all 32 maize-producing states

(Table S3), while the NARO-APCC forecasts were skillful

for 18 states (56%) (Fig. 5). The corresponding values for the

remaining crops were as follows: soybean, 97% of the 29

soybean-producing states for the USDA forecasts versus 24%

for the NARO-APCC forecasts; and rice, 100% of the six rice-

producing states for the USDA forecasts versus 17% for the

NARO-APCC forecasts. Last, the NARO-APCC forecasts

showed meaningful skill for 65% of the 37 wheat-producing

states (Fig. 5), while the USDA total wheat forecasts at the

state level were not available and were not assessed here.

4. Discussion

a. Relative advantages and disadvantages

The NARO-APCC forecasts are released 1–5 months ear-

lier than the JRC and USDA forecasts. The NARO-APCC

forecasts become available in March for maize and in January

for wheat for some countries in Europe, whereas the JRC

forecasts are always published for all EU countries in March

for soft and durum wheat, starting in April for maize and

soybean, and in June for rice. This feature of the NARO-APCC

forecasts is noticeable when compared to the USDA forecasts

that begin in August for maize, soybean, and rice and in July

for total wheat; the NARO-APCC forecasts begin in March or

April for the summer crops and in January for wheat. The

difference in the timing of forecast availability is a relative

advantage of the NARO-APCC forecasts and makes them

complementary with respect to the existing regional crop

forecasting systems. There are two reasons for this advantage.

The NARO-APCC forecasts focus on the yield anomaly,

which is associated mainly with the season climate conditions;

to predict this anomaly, climate forecasts are used as the sole

input. Note, however, that this advantage comes at the cost of

relatively larger forecast errors in the NARO-APCC forecasts

than in the JRC and USDA forecasts. The first JRC forecasts

are mostly based on historical yield trends (van der Velde and

Nisini 2019). Therefore, the combined use of the JRC yield

forecasts and the NARO-APCC yield anomaly forecasts in the

earlier stages of a season is potentially beneficial for users of

the JRC forecasts. In this way, the information from seasonal

climate forecasts can also be accounted for, as climatic condi-

tion of a coming season is currently not explicitly accounted for

in the JRC trend-based forecasts.

The assumption that forecast errors decrease with the

progress of crop growth is reasonable for at least two reasons.

The information available on crop status for the ongoing sea-

son increases with time and is progressively incorporated into

FIG. 4. The absolute error (AE) of the 2019 yield forecasts for (a) wheat in the United States and rice in (b) Italy,

(c) Japan, and (d) South Korea computed for the JRC, USDA, and NARO-APCC forecasts. The simple forecasts

are used as the reference forecasts.
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FIG. 5. The absolute percentage errors (APE) of the 2019 yield forecasts for maize, wheat, soybean, and rice in

the 20 countries and 39 states in the United States computed for the JRC, USDA, NARO-APCC, and simple

forecasts. NA indicates that the reported yield was not available. See Tables S2 and S3 in the supplemental material

for the country and state codes. The colored horizontal lines indicate the lowest and highest APE values of the

individual yield forecasts. If the left edge of the colored lines is located to the left of the gray bar, it indicates that the

individual yield forecasts were skillful.
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yield forecasts, as seen in the methods used for the JRC and

USDA forecasts. Uncertainties in yield impacts due to weather

conditions for the remaining portion of the season decrease as

harvesting approaches (Hansen et al. 2006). Therefore, the

increases in forecast skill found for the JRC and USDA fore-

casts are considered reasonable. This tendency is also consis-

tent with that observed in earlier studies. The decreases in

forecast errors for grain maize, soft wheat, and durum wheat

in EU countries from the beginning-of-season to the end-of-

season forecasts were reported for the JRC forecasts in van der

Velde and Nisini (2019). Holland (2011) reported that the

RMSE values computed between the USDA forecasts and

the reported yields of maize, soybean and winter wheat for the

United States decrease from approximately 6% in the first

forecast of a season to less than 2% in the final forecast. Similar

tendencies as those reported in Holland (2011) are also found

in Egelkraut et al. (2003) for the USDA maize and soybean

forecasts.

However, this tendency is unclear in the NARO-APCC

forecasts, with a few exceptions (e.g., wheat in Europe and

maize and wheat in the United States). In the NARO-APCC

forecasting method, the information on crop status is not

considered. Therefore, the NARO-APCC forecasts, in their

current form, do not benefit from updated crop status infor-

mation as crop growth progresses, although temperature and

precipitation forecast errors in general decrease as the lead

time of climate forecasts shortens as the harvest approaches. In

addition, the climate forecast skills at particular locations vary

by season. In the Northern Hemisphere, the climate forecast

skill is higher in the winter than in the summer season (Doblas-

Reyes et al. 2013; Min et al. 2014, 2017). This helps explain why

the yield forecast skills of the NARO-APCC forecasts do not

improve with crop growth progress in many cases. It is also

important to determine through future research whether cli-

mate conditions in the season were favorable enough regard-

less of climate forecast skill. This feature of the NARO-APCC

forecasts seems be a disadvantage, but this could be an ad-

vantage if a meaningful yield forecast skill can be achieved in

the earlier stages of a season.

Finally, in many locations, climate forecasts are particularly

skillful during periods with strong sea surface temperature

forcing events [e.g., El Niño–Southern Oscillation (ENSO)].

A warmer phase of ENSO, that is, an El Niño event, lasted

from the end of 2018 to the earlier half of 2019, based on the

oceanic Niño index (https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php). Consequently, the

yield forecast skills for the 2019 season presented here may be

better than those for neutral years (neither El Niño years nor

La Niña years). Assessments need to be continued for multiple

years to evaluate yield forecast skill more precisely. Since the

yield forecast skills shown here are based on APCC MME,

using seasonal climate forecasts from other weather centers as

the input to the statistical yieldmodels would result in different

skill levels, as recently tested (Iizumi et al. 2021).

b. Potential ways to move forward

We assessed the skill of the NARO-APCC 2019 yield fore-

casts. Benchmarks were established against reported yields

and against yield forecasts for the world’s major crop pro-

ducers published by two leading organizations, the JRC for the

EU and the USDA for the United States. A further evaluation

through comparison with other organizations’ forecasts and for

other regions in the world will be a worthwhile avenue for

future research. Indeed, many more regional forecasts besides

those considered here are available, for example, forecasts for

somemajor producers such as Australia, Canada, China, India,

and South Africa. In addition, assessing yield forecast skill in

developing countries is important to enable early interventions

and policy making (Mann et al. 2019). In developing countries,

crop production is predominantly performed by subsistence

farmers and is therefore more susceptible to climate conditions

during the season than industrialized farming. The next round

of evaluation may include countries located in the Southern

Hemisphere as well as multiyear samples. Furthermore, it will

be worthwhile assessing the yield forecast skills for winter and

spring wheat separately as climate forecast skills are different

season by season.

At the global scale, it is increasingly recognized that syn-

chronized yield variability across multiple countries is associ-

ated with major modes of oceanic and atmospheric variability

(Anderson et al. 2019; Mehrabi and Ramankutty 2019; Najafi

et al. 2020). Understanding such synchrony in large-scale cli-

matic drivers and the world’s crop production and, if possible,

forecasting this dependency would further improve the ro-

bustness of the global food supply chain, with benefits for

import-dependent countries. There are some attempts to

incorporate indices that represent large-scale oceanic and at-

mospheric variability into regional yield forecasting, e.g., in

Europe (Ceglar et al. 2017, 2018; Nobre et al. 2019). However,

regional forecasts cannot fully represent the impacts of syn-

chronized yield variability on global foodmarkets. Therefore,

global yield forecasting is potentially more advantageous

than regional systems in representing synchronous produc-

tion impacts.

Recent advancements in machine learning techniques (e.g.,

Jeong et al. 2016; Hoffman et al. 2018; Mann et al. 2019; Vogel

et al. 2019) seem somewhat promising for improving the sta-

tistical yield models currently used in the NARO-APCC sys-

tem. Recent increases in the availability of crop-related data at

the regional to global level would help to improve global yield

forecasting. Such global datasets include gridded historical

yield time series data (Iizumi and Sakai 2020), rainfed and ir-

rigated yields (Siebert and Doll 2010; Sloat et al. 2020), po-

tential sowing and harvesting windows (Iizumi et al. 2019),

high-resolution crop phenology (Luo et al. 2020) and crop-

specific harvested areas in 2010 (Yu et al. 2020). Annual crop

type masks derived from satellite images (Inglada et al. 2015)

and incorporating satellite-derived vegetation indices into

statistical yield models (Peng et al. 2018) are expected to be

useful. The improved understanding of climate-yield rela-

tionships developed in recent years and the yield impacts

of climate extremes in particular (e.g., Jeong et al. 2016;

Schauberger et al. 2017a,b; Ben-Ari et al. 2018; Lecerf et al.

2019; Li et al. 2019; Vogel et al. 2019) should enable us to select

appropriate predictors for seasonal yield forecasting in a changing

climate.
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However, difficulties still remain. For instance, currently,

annual yield time series are not separately available for rainfed

and irrigated crops. Only average rainfed and irrigated yields

for the period 1998–2002 are available at global level (Siebert

and Doll 2010). This prevents us from modeling rainfed and

irrigated yields separately in a more explicit way, although the

irrigation intensity (the ratio of irrigated area to harvested

area) is in part considered within the statistical yield models

used in the NARO-APCC system by estimating regression

coefficients for each grid cell.

5. Conclusions

This study evaluates the 2019 yield forecasts derived from

the NARO-APCC Crop Forecasting Service, which is cur-

rently in a test mode. The comparison of multiple operational

yield forecasts (the JRC, USDA, NARO-APCC, and simple

forecasts) shows that the NARO-APCC forecasts can provide

meaningful forecasts (relative to the simple forecasts) one to

five months earlier than the existing regional systems. The

development and operationalization of global crop forecasting

services, including the NARO-APCC forecasts, are of growing

importance. These services can increase the capacity of socie-

ties to respond to production shocks in the face of a rapidly

globalizing food supply chain and climate change, which will

ultimately contribute to global food security. Global crop

forecasting services are also expected to complement existing

regional forecasting services and could be a valuable input to

initiatives for monitoring global agriculture and commodity

markets such as GEOGLAM and AMIS.
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